Data-driven Challenges to Architectures and Systems: An Architecture Perspective

Peter M. Kogge

Assoc. Dean of Engineering University of Notre Dame IBM Fellow (retired)

My 4 Questions

- 1. "On the spot" question. Can it be addressed by current architectures & systems? If so, how? If not, what advances are needed to solve the issue?
- 2. What are architecture/systems issues most applications people overlook?
- 3. What, in my current area of research, is the most exciting development which will benefit applications the most?
- 4. Looking back on my experience and the architecture/system decisions I have taken, what would I have done differently?

Q1: On the Spot Question

- Choose a Data Driven Challenge from prior speakers.
- Can it be addressed by current architectures & systems?
- If so, how?
- If not, what advances are needed to solve the issue

Q2: Issues Most Overlooked = Memory & Getting There

Also Data Mining, Large Dynamic Graphs

	Stockpile	Intelligence	Defence	Climate	Plasma	Transportation	Bio-info	Health&Safety	Earthquakes	Geophysics	Astrophysics	Materials	Organ. Systems
Performance			1	Х	Х						X		
Flops		7		^	^						^		
Memory		X				3	2					X	
Capacity													
Memory		X		X							X	X	4
Bandwidth													
Memory	X	X		X							X		4
Latency													
Interconnect		X		X							X	X	4
Bandwidth													
Interconnect	V	X		X							X		4
Latency	^	- X		^							^		*

- 1 Radar Cross section
- 2 Genomics
- 3 Automobile Noise
- 4 Biological Systems Modeling

(from NRC's "Getting Up to Speed")

We Talk About the Memory Wall, But

- Memory is as dumb today as it was 60 years ago
 - Even though its 90% of the silicon by area
 - Even though 45% of die IS NOT MEMORY
- Memory chip architectures focused on burst cache line bandwidth, not latency
- Performance dominated by # concurrent accesses from remote CPUs
- Modularity complicate reliable configurations
- Newest sense of "locality" still "processor centric"
 - Even though there are 10s-100s of memory chip and 1,000s to 100,000s of memory banks per locale

Q3: Most Exciting Development

- Beginnings of *Relentless* Multi-Threading
 - First by Chip Multi-Processors (CMP)
 - Then limited 2 way
 - New combinations: eg. Niagara, Eldorado
- We can go further: Reduce thread state weight
 - Cheaper thread => more threads
 - More threads => more memory references
 - Lighter states => "Mobile threads"
 - Lighter states => Simple CPUs on memory die

Q4: What Would I Have Done Differently?

Make the original EXECUBE "look like memory"

My Personal Vision

- Next Gen challenge: KD on massive dynamic graphs
 - Latency in realms of minimal reuse crucial
- Take Multi-Core to the Extreme
 - Memory chip architectures with multiple integrated simple processors next to individual memory banks
- Relentless multi-threading:
 - With thread state = cache line or smaller
- Switch from processor-centric to memory bank centric
- Let threads migrate: reducing latencies to 1-way